Overexpression of Medicago SVP genes causes floral defects and delayed flowering in Arabidopsis but only affects floral development in Medicago

نویسندگان

  • Mauren Jaudal
  • Jacob Monash
  • Lulu Zhang
  • Jiangqi Wen
  • Kirankumar S. Mysore
  • Richard Macknight
  • Joanna Putterill
چکیده

The MADS-domain transcription factor SHORT VEGETATIVE PHASE plays a key role as a repressor of the transition to flowering and as a regulator of early floral development in Arabidopsis thaliana (Arabidopsis). However, no flowering-time repressors have been functionally identified in the model legume Medicago truncatula (Medicago). In this study, phylogenetic analysis of two closely-related MtSVP-like sequences, MtSVP1 and MtSVP2, showed that their predicted proteins clustered together within the eudicot SVP clade. To determine if the MtSVP-like genes have a role in flowering, they were functionally characterized in Medicago and Arabidopsis. Transcripts of both MtSVP genes were abundant and broadly expressed in vegetative tissues but were detected at much lower levels in flowers in Medicago. Over-expression of the MtSVP genes in Arabidopsis resulted in delayed flowering and flowers with many abnormal phenotypes such as leafy sepals, changes to floral organ number and longer pedicels than the wild type. By contrast, in transgenic Medicago, over-expression of MtSVP1 resulted in alterations to flower development, but did not alter flowering time, suggesting that MtSVP1 may not function to repress the transition to flowering in Medicago.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three Medicago MtFUL genes have distinct and overlapping expression patterns during vegetative and reproductive development and 35S:MtFULb accelerates flowering and causes a terminal flower phenotype in Arabidopsis

The timing of the transition to flowering is carefully controlled by plants in order to optimize sexual reproduction and the ensuing production of seeds, grains, and fruits. The genetic networks that regulate floral induction are best characterized in the temperate eudicot Arabidopsis in which the florigen gene FT plays a major role in promoting the transition to flowering. Legumes are an impor...

متن کامل

Specification of Arabidopsis floral meristem identity by repression of flowering time genes.

Flowering plants produce floral meristems in response to intrinsic and extrinsic flowering inductive signals. In Arabidopsis, the floral meristem identity genes LEAFY (LFY) and APETALA1 (AP1) are activated to play a pivotal role in specifying floral meristems during floral transition. We show here that the emerging floral meristems require AP1 to partly specify their floral identities by direct...

متن کامل

The Medicago FLOWERING LOCUS T homolog, MtFTa1, is a key regulator of flowering time.

FLOWERING LOCUS T (FT) genes encode proteins that function as the mobile floral signal, florigen. In this study, we characterized five FT-like genes from the model legume, Medicago (Medicago truncatula). The different FT genes showed distinct patterns of expression and responses to environmental cues. Three of the FT genes (MtFTa1, MtFTb1, and MtFTc) were able to complement the Arabidopsis (Ara...

متن کامل

An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development

Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha...

متن کامل

The rice StMADS11-like genes OsMADS22 and OsMADS47 cause floral reversions in Arabidopsis without complementing the svp and agl24 mutants

During floral induction and flower development plants undergo delicate phase changes which are under tight molecular control. MADS-box transcription factors have been shown to play pivotal roles during these transition phases. SHORT VEGETATIVE PHASE (SVP) and AGAMOUS LIKE 24 (AGL24) are important regulators both during the transition to flowering and during flower development. During vegetative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2014